G010 Benzidine Dyes ## **Results of Testing** | Chemical Name | CAS No. | Study Code/Type | Protocol/Guideline | Species | Exposure | Dose/Concentration | No. per Group | Results | Reference | |---|---------------|---------------------------------------|--|--------------|---|--------------------|---------------|--|--| | Benzidine,
o-toluidine,
o-dianisidine | Not available | EFBDEG
Aerobic
biodegradation | Non-TSCA Protocol/
Guideline (docket
OPTS-42001) | Not relevant | aerobic, conditions
similar to OECD
Ready Biodegrad-
ability Test 301A in
regard to inoculum
level and test
medium. | 3 mg/l | Not relevant | The chemicals studies, a selection of aromatic amines, possible biodegradation products of azo dyes, including odianisidine and 3,3'-dichlorobenzidine. Under the test conditions these products were not "readily biodegradable" but their "inherent biodegradability" was demonstrated. Results were confirment using the OECD Inherent Biodegradability Test 302 B (Zahn-Wellens test). | ETAD (The
Ecological &
Toxicol. Assoc. of
the Dyestuffs Mfg.
Industry) Project E
3011, OTS0507287 | | Benzidine,
o-toluidine,
o-dianisidine | Not available | EFBDEG
Aerobic
biodegradation | Non-TSCA Protocol/
Guideline (docket
OPTS-42001) | Not relevant | aerobic conditions, 28
days, sewage
inoculum | 20 mg/l DOC | Not relevant | Results indicate the "readily biodegradable" of te 4 aromatic amines (aniline, p-anisidine, p-phenetidine and o-toluidine) and the "inherent biodegradability" of o-dianisidine and 3,3'-dichlorobenzidine. Therefore, if azo dyes are anaerobically cleaved to these amines, it is unlikely that they will remain unchanged in the environment. | Brown, D., et al. The
aerobic biodegrad-
ability of primary
aromatic amines,
ETAD, Docket
OPTS-42002 | | Benzidine, o-toluidine, o-dianisidine | Not available | EFBDEG
Anaerobic
biodegradation | Non-TSCA Protocol/
Guideline (docket
OPTS-42001) | Not relevant | anaerobic conditions | Not reported | Not relevant | Under the test conditions a moderate rate of primary degradation was observed with Direct Red 7, Acid Red 114, and Direct Blue 15. | ETAD Project E
3010, OTS0507287 | | Benzidine, o-toluidine, o-dianisidine | Not available | EFBDEG
Anaerobic
biodegradation | Non-TSCA Protocol/
Guideline (docket
OPTS-42001) | Not relevant | 35 °C, anaerobic
conditions 42 days | Not reported | Not relevant | Studies were performed on 22 dyes chosed to be representative of major classes of dyestuffs and included Direct Red 7 as a positive control. The results show that with the single exception of Acid Blue 80 all the dyestuffs tested can show a substantial degree of colour removal and thus it seems that the breakdown of dyestuffs in the environment is likely to be initiated under anaerobic conditions. | Brown, D., et al. The
degradation of dye-
stuffs: Part 1:
Primary biodegrad-
ation under anaerobic
conditions, ETAD,
Docket OPTS-42002 | | Benzidine,
o-toluidine,
o-dianisidine | Not available | HEADME
Pharmacokinetics | Non-TSCA Protocol/
Guideline (docket
OPTS-42001) | rats | Not reported | Not reported | Not reported | Experiments were performed on C-14-labeled Direct Blue 15 and Direct Red 2. The minimum detectable levels of both dyes in feces were 0.2 ppm. Based on radioassays, 74% of each dose was excreted via the feces; however, HPLC assays showed that only 11% of each dose was present as intact dye in the excrement. | Levine, R.A., et al.
1982. J. Anal
Toxicol 6: July/
August., FDA and
NCTR (Natl Ctr
Toxicol Research)
OTS0507293 | Page 1 of 3 ## G010 Benzidine Dyes | Chemical Name | CAS No. | Study Code/Type | Protocol/Guideline | Species | Exposure | Dose/Concentration | No. per Group | Results | Reference | |---|---------------|--|--|------------------------------------|---|--------------------|---------------|--|---| | Benzidine, o-toluidine, o-dianisidine | Not available | HEADME
Pharmacokinetics | Non-TSCA Protocol/
Guideline (docket
OPTS-42001) | rats | oral (single dose) | 12 mg/kg | Not reported | The metabolism of Direct Blue 15 and Direct Red 2 in rats was studied. The base (DiMxBzd) of Direct Blue 15 was more extensively metabolized and most of the 14C in various extracts were identified as known metabolites. The base (DiMeBzd) of Direct Red 2 was more extensively metabolized with a small percentage of 14C identified as know metabolites. Distribution studies showed that liver, kidney, and lung accumulated and retained higher levels of 14C than other tissues (at 72 hrs). Peak levels of 14C, which occurred 8-12 hours after dosing were significantly higher with Direct Red 2 than Direct Blue 15. | Bowman, M.C., et al.
1982. J. Anal.
Toxicol. 6: July/
August., NIOSH,
FDA, and NCTR
OTS0507294 | | Benzidine,
o-toluidine,
o-dianisidine | Not available | HEADME
Pharmacokinetics | Non-TSCA Protocol/
Guideline (docket
OPTS-42001) | rats | Not reported | 2 mg | Not reported | Peak levels of metabolites were excreted either 0-12 or 12-
24 hr after the dyes were administered and, in seven of
nine instances, no metabolites persisted in the urine after
48 hr. Minimum detectable levels of all metabolites were
12 ppb or less. All nine dyes were shown to be converted
to measurable levels of their benzidine-congener-based
metabolites in rats. | OTS0507292, NTP
(National Toxicology
Program) and NCTR | | Benzidine, o-toluidine, o-dianisidine | Not available | HEADME
Pharmacokinetics | Non-TSCA Protocol/
Guideline (docket
OPTS-42001) | rats | Not reported | 2 mg | Not reported | Nine azo dyes based on dimethyl-, dimethoxy-, or dichlorobenzidene were studied to to determine whether free amine cogeners, their metabolites or conjugates were excreted in the urine. All 9 dyes were converted to measureable levels of their benzidine-cogener-based metabolites. Peak levels of metabolites were excreted either 0-12 or 12-24 hr after the dyes were administered and, in seven of nine instances, no metabolites persisted in the urine after 48 hr. Minimum detectable levels of all metabolites were 12 ppb or less. | OTS0507292, NTP
and NCTR | | Benzidine, o-toluidine, o-dianisidine | Not available | HECTOXTRFM
Cell transformation | Non-TSCA Protocol/
Guideline (docket
OPTS-42001) | hamster
(kidney
BHK21 cells) | in vitro | Not reported | Not reported | Direct Blue 14 and Direct Blue 53 produced positive results. | ETAD Project T
2002, OTS0507287 | | Benzidine, o-toluidine, o-dianisidine | Not available | HEGTOXMUTA
Salmonella
microsome mutation
test | Non-TSCA Protocol/
Guideline (docket
OPTS-42001) | Salmonella
typhimurium | in vitro, with and without S-9 activation | Not reported | Not reported | Direct Blue 14 produced negative results. Direct Blue 53 produced a positive result with activation. | ETAD Project T
2002, OTS0507287 | Page 2 of 3 ## G010 Benzidine Dyes | Chemical Name | CAS No. | Study Code/Type | Protocol/Guideline | Species | Exposure | Dose/Concentration | No. per Group | Results | Reference | |---------------------------------------|---------------|--|--|---------|---|--------------------------------------|---------------|--|--| | Benzidine, o-toluidine, o-dianisidine | | HEGTOXMUTA
Salmonella
microsome mutation
test | Non-TSCA Protocol/
Guideline (docket
OPTS-42001) | | in vitro, with and without S-9 activation | $20,100,500,2500,and5000\mu g/plate$ | • | Red 114 with the addition of S-9 mix with a maximal | ETAD Project T
2015-3, Docket
OPTS-42002 | | Benzidine, o-toluidine, o-dianisidine | Not available | HESTOX
Subacute toxicity | Non-TSCA Protocol/
Guideline (docket
OPTS-42001) | | oral (gavage), 22
doses over 30 days | 1000 mg/kg b.w. | • | without irreversible signs of toxicity and exhibited very low cumulative toxicity. | ETAD Project T
2014, OTS0507287,
Leist, K.H Ecotox
& Environ Safety.
1982. 6: 457-463. | Page 3 of 3